- Tools for identifying features from ENCODE assays
- Integrative analysis across data types
- Quality Metrics for ENCODE data
- Other Tools
Updated 01 May 2012
Home - Downloads - Preview - Data Policy - Data Standards - Software Tools - Experiment Summary - Experiment Matrix - ChIP-seq Matrix |
Feng J, Liu T, Zhang Y. Using MACS to identify peaks from ChIP-Seq data. Curr Protoc Bioinformatics. 2011 Jun;Chapter 2:Unit 2.14.
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.
Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein MB. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol. 2009 Jan;27(1):66-75.
Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol. 2008 Dec;26(12):1351-9.
Sboner A, Habegger L, Pflueger D, Terry S, Chen DZ, Rozowsky JS, Tewari AK, Kitabayashi N, Moss BJ, Chee MS et al. FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol. 2010;11(10):R104.
Du J, Leng J, Habegger L, Sboner A, McDermott D, Gerstein M. IQSeq: integrated isoform quantification analysis based on next-generation sequencing. PLoS One. 2012;7(1):e29175.
Habegger L, Sboner A, Gianoulis TA, Rozowsky J, Agarwal A, Snyder M, Gerstein M. RSEQtools: a modular framework to analyze RNA-Seq data using compact, anonymized data summaries. Bioinformatics. 2011 Jan 15;27(2):281-3.
Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol. 2010 May;28(5):503-10.
Rozowsky J, Abyzov A, Wang J, Alves P, Raha D, Harmanci A, Leng J, Bjornson R, Kong Y, Kitabayashi N et al. AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol Syst Biol. 2011 Aug 2;7:522.
John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL, Stamatoyannopoulos JA. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet. 2011 Mar;43(3):264-8.
Lu ZJ, Yip KY, Wang G, Shou C, Hillier LW, Khurana E, Agarwal A, Auerbach R, Rozowsky J, Cheng C et al. Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. Genome Res. 2011 Feb;21(2):276-85.
Kundaje A, Li Q, Brown J, Rozowsky J, Harmanci A, Wilder S, Gerstein M, Dunham I, Birney E, Batzoglou S et al. Reproducibility measures for automatic threshold selection and quality control in ChIP-seq datasets. (In Preparation)
Li Q, Brown JB, Huang H, Bickel PJ. Annals of Applied Statistics. 5(3):1752-1779.
Hoffman M, Ernst J, Wilder S, Kundaje A, Harris R, Libbrecht M, Giardine B, Bilmes J, Birney E, Hardison R et al. Integrative annotation of chromatin elements from ENCODE data. (In Review)
Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012 Feb 28;9(3):215-6.
Buske OJ, Hoffman MM, Ponts N, Le Roch KG, Noble WS. Exploratory analysis of genomic segmentations with Segtools. BMC Bioinformatics. 2011 Oct 26;12:415.
Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes JA, Noble WS. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat Methods. 2012 Mar 18;9(5):473-6.
Jee J, Rozowsky J, Yip KY, Lochovsky L, Bjornson R, Zhong G, Zhang Z, Fu Y, Wang J, Weng Z et al. ACT: aggregation and correlation toolbox for analyses of genome tracks. Bioinformatics. 2011 Apr 15;27(8):1152-4.
Cheng C, Min R, Gerstein M. TIP: a probabilistic method for identifying transcription factor target genes from ChIP-seq binding profiles. Bioinformatics. 2011 Dec 1;27(23):3221-7.
Kundaje A, Jung LY, Kharchenko P, Wold B, Sidow A, Batzoglou S, Park P. Assessment of ChIP-seq data quality using cross-correlation analysis. (Submitted)
Neph SJ et al. BEDOPS: High performance genomic feature operations. Bioinformatics. (In Revision)
Hoffman MM, Buske OJ, Noble WS. The Genomedata format for storing large-scale functional genomics data. Bioinformatics. 2010 Jun 1;26(11):1458-9.